Antes del 8 de Noviembre de 1895, el diagnóstico médico se realizaba por el interrogatorio al paciente, por la palpación y por la auscultación. Fue tal la magnitud del descubrimiento que a los pocos meses del anuncio, ya se realizaban en el mundo exámenes radiográficos con fines médicos, y se había inventado y popularizado la fluoroscopía.
Luego, en las siguientes décadas, fue impresionante el impulso con que se desarrolló esta especialidad. Ya no solo era cuestión de poder ver los huesos en patología traumática u osteoarticular, sino el poder ver, con la evolución de las sustancias de contraste, otras estructuras internas como el tubo digestivo, el sistema urinario, los vasos sanguíneos, etc.
Este notable evento fue merecedor en 1901 del primer premio Nobel de Física, y resultó en un cambio trascedental en el manejo de nuestros pacientes al aportar la piedra angular de una nueva especialidad médica de desarrollo vertiginoso: la radiología, que permitía estudiar al paciente por dentro, haciendo cada vez más preciso el diagnóstico de las enfermedades.
El 8 de Noviembre de 1995, fue para la Medicina una fecha inmemorable; se cumplía 100 años del descubrimiento de los Rayos X por el profesor Wilhelm Conrad Röntgen.
En Octubre de 1895, cuando trabajaba intensamente con rayos catódicos en un cuarto oscuro, pudo ver un resplandor en un pequeño papel con cubierta fluorescente, el cual era producido por una energía que no era visible ni conocida a la cual denominó Rayos X. Luego observó que esta energía atravesaba el cartón negro, un libro y madera. Esto obligó al científico a aislarse del mundo exterior en su laboratorio, donde comía y dormía, no permitiendo el ingreso a nadie, ni aún a sus asistentes, para poder concentrarse sin ninguna distracción a u descubrimiento.
Grande fue su asombro cuando vió los huesos de la mano de su esposa en el papel fluorescente al interponerla a los Rayos X.
El progreso de la informática tiene y seguirá teniendo una gran influencia en la radiología. En 1972, el británico Hounsfield presenta en Londres el primer tomógrafo computarizado, en el cual la imagen no es analógica, como en la radiología convencional, sino digital. El equipo, que le valió un premio Nobel, fue desarrollado en base a los trabajos matemáticos, en 1917, del australiano Radon y a los de un sudafricano, Cormack, en 1950, sobre la distribución de las dosis de radioterapia causada por la heterogeneidad de las regiones del cuerpo.
El tomógrafo mide la atenuación de los rayos X conforme pasan a través de una sección del cuerpo desde diferentes ángulos, y luego, con los datos de estas medida, el computador es capaz de reconstruir la imagen del corte.
La más reciente aportación de la tecnología al diagnóstico por la imagen es la resonancia magnética. Su descubrimiento les valió el premio Nobel de Física en 1952 a Bloch y Purcell, pero no fue hasta 1981 que se publicaron los estudios de los primeros pacientes sometidos a la técnica de R.M. con la espectroscopía, lo que permitiría una localización precisa de la fuente de la actividad metabólica en vivo.
La gran diferencia de la resonancia magnética con todas las otras técnicas radica en que en lugar de radiaciones utiliza un pulso de radiofrecuencia y, una vez finalizado el pulso, se capta una señal proveniente del paciente, la cual es procesada por un equipo computarizado para reconstruir una imagen.
Debido al continuo mejoramiento de los equipos de Rayos X (primero el seriógrafo, luego la angiografía por sustracción digital) a la aparición de otras modalidades de imagen y material biomédico, la radiología tiende a convertirse en el pilar fundamental del diagnóstico y en algunos casos de tratamiento.
Se prevee que en un futuro no muy lejano, el paciente ingresará en una cabina durante pocos minutos, donde una máquina altamente computarizada, obtendrá toda la información de la morfología interna de sus órganos, así como también información de análisis bioquímicos.
Luego los médicos tratantes: el especialista clínico, el cirujano, el intervencionista, etc, pasarán a una sala o pequeño auditorio donde verán una imagen holográfica tridimensional que es producida por el cruce de rayos láser, donde podrán realizar un diagnóstico de precisión y decidir el mejor tratamiento.
BIBLIOGAFIA.
No hay comentarios:
Publicar un comentario